Solutions to Final in Mathematics A

Moed C

1) a) Find the inverse function of

$$y = \frac{x-1}{x+3}$$

Solution: Replacing x with y and y with x we obtain $x = \frac{y-1}{x+3}$. Hence x(y+3) = y-1 and xy + 3x = y - 1. Hence the inverse function is $y = \frac{3x+1}{1-x}$.

b) Differentiate

$$y = \frac{(x+1)(x+2)(x+3)}{(x^2+1)(x^2+2)(x^2+3)}$$

Solution: Taking logarithm in both sides we obtain

$$\ln y = \ln \frac{(x+1)(x+2)(x+3)}{(x^2+1)(x^2+2)(x^2+3)} = \ln(x+1) + \ln(x+2) + \ln(x+3) - \ln(x^2+1) - \ln(x^2+2) - \ln(x^2+3)$$

Differentiating we obtain

$$\frac{y'}{y} = \frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} - \frac{2x}{x^2+1} - \frac{2x}{x^2+2} - \frac{2x}{x^2+3}$$

Hence

$$y' = \frac{(x+1)(x+2)(x+3)}{(x^2+1)(x^2+2)(x^2+3)} \left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} - \frac{2x}{x^2+1} - \frac{2x}{x^2+2} - \frac{2x}{x^2+3}\right)$$

2) a) Using the definition only, find the derivative of

$$y = 4 - \sqrt{x+3}$$

Solution: We have

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(4 - \sqrt{x+h+3}) - (4 - \sqrt{x+3})}{h} = \lim_{h \to 0} \frac{\sqrt{x+3} - \sqrt{x+h+3}}{h} =$$
$$= \lim_{h \to 0} \frac{(\sqrt{x+3} - \sqrt{x+h+3})(\sqrt{x+3} - \sqrt{x+h+3})}{h(\sqrt{x+3} - \sqrt{x+h+3})} = \lim_{h \to 0} \frac{-h}{h(\sqrt{x+3} - \sqrt{x+h+3})} =$$
$$= \lim_{h \to 0} \frac{-1}{\sqrt{x+3} - \sqrt{x+h+3}} = -\frac{1}{2\sqrt{x+3}}$$

b) Compute the limit $\lim_{x\to 1} \frac{2^x-2}{|x-1|^2}$.

Solution: We have

$$\lim_{x \to 1} \frac{2^x - 2}{|x - 1|^2} = \lim_{x \to 1} \frac{2^x - 2}{(x - 1)^2} = \lim_{x \to 1} \frac{2^x \ln 2}{2(x - 1)}$$

The last equality follows from L'hospital rule. The right most limit does not exist since it is of the type one over zero.

3) Find the equation of the normal to $y^3(2-y) = x^2$ at (-1, 1).

Solution: Write the equation as $2y^3 - y^4 = x^2$. Differentiating, we get $6y^2y' - 4y^3y' = 2x$. Plugging the point (-1, 1) we get $2y'|_{(-1,1)} = -2$ or $y'|_{(-1,1)} = -1$. Hence, the equation of the normal is (y - 1) = (x + 1) or y = x + 2

4) Define

$$f(x) = \begin{cases} 3, & x \text{ is odd} \\ x^2 + 3x, & \text{otherwise} \end{cases}$$

Determine where f(x) is continuous.

Solution: The function is not continuous. For example, at x = 1 we have $\lim_{x\to 1} f(x) = \lim_{x\to 1} (x^2 + 3x) = 4 \neq f(1)$.

5) Prove that for $0 \le x \le 1$ we have

$$1 + \ln(x + \sqrt{1 + x^2}) \ge \sqrt{1 + x^2}$$

Define $f(x) = 1 + \ln(x + \sqrt{1 + x^2})$ and $g(x) = \sqrt{1 + x^2}$. We have f(0) = g(0). Hence, it is enough to prove that for all $0 \le x \le 1$ we have $f'(x) \ge g'(x)$. We have

$$f'(x) = \frac{1}{x + \sqrt{1 + x^2}} \left(1 + \frac{x}{\sqrt{1 + x^2}} \right) = \frac{1}{x + \sqrt{1 + x^2}} \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}$$

Also, we have

$$g'(x) = \frac{1}{\sqrt{1+x^2}}$$

Since $0 \le x \le 1$, we obtain $f'(x) \ge g'(x)$.

6) Define

$$f(x) = \frac{x^2 - 9}{(x - a)(x - b)}$$

It is given that a > 0 and that $\lim_{x\to a} f(x) = 3$. Find all local extreme points for f(x).

Solution: Since the limit exists at x = a then $x = \pm 3$. Since a > 0 then x = 3. Hence, for all $x \neq 3$ we have $f(x) = \frac{x+3}{x-b}$. Hence $f'(x) = \frac{-b-3}{(x-b)^2}$. This is zero only if b = 3. But since $\lim_{x\to a} f(x) = 3$, then $b \neq 3$. So f(x) has no local extreme points.

7) Assume a > 0. For what values of a the function

$$f(x) = x^2 - 2a\ln x - a$$

has exactly one root.

Solution: We have $f'(x) = \frac{2(x^2-a)}{x}$. The function is defined for all x > 0. Since a > 0, we see that x = a is a local minimum. Therefore, if f(a) >=, the function has no roots, and if f(a) < 0, the function has 2 roots. Hence, it will have one root only if f(a) = 0. This happens if a = 1.